Characterization of the Promoter, MxiE Box and 5′ UTR of Genes Controlled by the Activity of the Type III Secretion Apparatus in Shigella flexneri
نویسندگان
چکیده
Activation of the type III secretion apparatus (T3SA) of Shigella flexneri, upon contact of the bacteria with host cells, and its deregulation, as in ipaB mutants, specifically increases transcription of a set of effector-encoding genes controlled by MxiE, an activator of the AraC family, and IpgC, the chaperone of the IpaB and IpaC translocators. Thirteen genes carried by the virulence plasmid (ospB, ospC1, ospD2, ospD3, ospE1, ospE2, ospF, ospG, virA, ipaH1.4, ipaH4.5, ipaH7.8 and ipaH9.8) and five genes carried by the chromosome (ipaHa-e) are regulated by the T3SA activity. A conserved 17-bp MxiE box is present 5' of most of these genes. To characterize the promoter activity of these MxiE box-containing regions, similar ∼67-bp DNA fragments encompassing the MxiE box of 14 MxiE-regulated genes were cloned 5' of lacZ in a promoter probe plasmid; β-galactosidase activity detected in wild-type and ipaB strains harboring these plasmids indicated that most MxiE box-carrying regions contain a promoter regulated by the T3SA activity and that the relative strengths of these promoters cover an eight-fold range. The various MxiE boxes exhibiting up to three differences as compared to the MxiE box consensus sequence were introduced into the ipaH9.8 promoter without affecting its activity, suggesting that they are equally efficient in promoter activation. In contrast, all nucleotides conserved among MxiE boxes were found to be involved in MxiE-dependent promoter activity. In addition, we present evidence that the 5' UTRs of four MxiE-regulated genes enhance expression of the downstream gene, presumably by preventing degradation of the mRNA, and the 5' UTRs of two other genes carry an ancillary promoter.
منابع مشابه
Analysis of virulence plasmid gene expression defines three classes of effectors in the type III secretion system of Shigella flexneri.
Proteins directly involved in entry and dissemination of Shigella flexneri into epithelial cells are encoded by a virulence plasmid of 200 kb. A 30-kb region (designated the entry region) of this plasmid encodes components of a type III secretion (TTS) apparatus, substrates of this apparatus and their dedicated chaperones. During growth of bacteria in broth, expression of these genes is induced...
متن کاملMxiE regulates intracellular expression of factors secreted by the Shigella flexneri 2a type III secretion system.
The mxi-spa locus on the virulence plasmid of Shigella flexneri encodes components of the type III secretion system. mxiE, a gene within this locus, encodes a protein that is homologous to the AraC/XylS family of transcriptional regulators, but currently its role in pathogenesis remains undefined. We characterized the virulence phenotype of a nonpolar mxiE mutant and found that this mutant reta...
متن کاملThe chaperone IpgC copurifies with the virulence regulator MxiE.
The expression of a subset of Shigella flexneri virulence genes is dependent upon a cytoplasmic chaperone, IpgC, and an activator from the AraC/XylS family, MxiE. In this paper, we report that the chaperone forms a specific and stable heteromer with MxiE.
متن کاملEngineered and construction of pDS132::∆virG as suicide vector for targeted gene deletion of virG from Shigella flexneri 2a in order to generation a live attenuated Shigella vaccine
Background & Objective: Shigella are Gram negative bacteria capable of inducing their entry into non-phagocytic cells via secretion of various effector proteins called invasion plasmid antigens (Ipas). The most important of them is VirG protein. Live attenuated Shigella vaccines have indicated promise in inducing protective immune responses in human clinical trials. In current situation, const...
متن کاملLiposomes recruit IpaC to the Shigella flexneri type III secretion apparatus needle as a final step in secretion induction.
Shigella flexneri contact with enterocytes induces a burst of protein secretion via its type III secretion apparatus (TTSA) as an initial step in cellular invasion. We have previously reported that IpaD is positioned at the TTSA needle tip (M. Espina et al., Infect. Immuno. 74:4391-4400, 2006). From this position, IpaD senses small molecules in the environment to control the presentation of Ipa...
متن کامل